

TEM96A

Thermal Conductive RF Absorber Pad

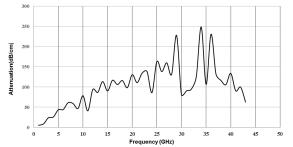
LiPOLY TEM96A is a thermally conductive absorber based upon soft magnetic materials dispersed in a polymeric resin. It has a thermal conductivity of 2.0 W/m*K and dissipates electromagnetic radiation rapidly to mitigate against EMI issues.

FEATURES

- / Thermal conductivity: 2.0 W/m*K
- / Excellent absorption characteristics
- / Naturally tacky
- / Reworkable

TYPICAL APPLICATION

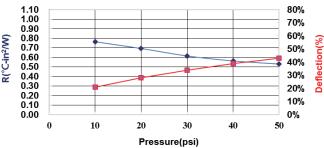
 / IC, CPU, MOS, LED, M/B, Heat sink
 / LCD-TV, Notebook PC, PC, Telecom device, Wireless hub
 / DDR II module, DVD applications, Hand-set applications


SPECIFICATIONS

- / Sheet form
- / Die-cut parts

FREQUENCY APPLICATION

2.4 GHz Wi-Fi Router , Bluetooth
3.5 GHz 5G Mobile Networks
5.0 GHz Wi-Fi Router
12~18 GHz Low Earth Orbit (LEO) System
28 GHz 5G Mobile Networks
39 GHz 5G Mobile Networks


Attenuation

TYPICAL PROPERTIES

	TEMOCA		
PROPERTY	TEM96A	TEST METHOD	UNIT
Color	Dark Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	4.4	ASTM D792	g/cm ³
Hardness	40	ASTM D2240	Shore OO
TML	0.14	By LiPOLY	%
Water absorption	0.04	ASTM D570	%
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	21	ASTM D5470 modify	%
Deflection @20 psi	28	ASTM D5470 modify	%
Deflection @30 psi	34	ASTM D5470 modify	%
Deflection @40 psi	39	ASTM D5470 modify	%
Deflection @50 psi	43	ASTM D5470 modify	%
EMI Attenuation @1.0mm			
EMI attenuation@ 2.4 GHz	16.6	ASTM D4935 modify	dB/cm
EMI attenuation@ 3.5 GHz	24.0	ASTM D4935 modify	dB/cm
EMI attenuation@ 5.0 GHz	43.5	ASTM D4935 modify	dB/cm
EMI attenuation@ 12 GHz	93.8	ASTM D4935 modify	dB/cm
EMI attenuation@ 18 GHz	116	ASTM D4935 modify	dB/cm
EMI attenuation@ 28 GHz	131	ASTM D4935 modify	dB/cm
EMI attenuation@ 39 GHz	106	ASTM D4935 modify	dB/cm
ELECTRICAL		'	
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL		1	
Thermal conductivity	2.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.762	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.692	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.614	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.562	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.530	ASTM D5470	°C-in²/ W
	0.000		3 ,

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product under the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or on-infringement of any LiPOLY material or product for any specific orgeneral uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2022 LiPOLY.